• LinkedIn
  • KONTAKT
  • ANNONCERING
  • PARTNERLOGIN

ElektronikFOKUS

Fokus på elektronik

  • Branchenyt
  • Design & udvikling
  • Events
  • IoT & embedded
  • Komponenter & konnektorer
  • Power
  • Produktion
  • Test & mål
  • Wireless & data
  • Artikler fra Aktuel Elektronik

Artikler fra Aktuel Elektronik11. 02. 2025 | Pia Nielsen

Implementering af kompleks diskret logik med mikrocontrollere

Artikler fra Aktuel Elektronik11. 02. 2025 By Pia Nielsen

CLB-periferien (Configurable Logic) i PIC16F13145-familien af mikrocontrollere gør designere i stand til at implementere komplekse diskrete logikfunktioner i hardwaren for at reducere BOM’en og udvikle kundespecifik applikationslogik

Artiklen har været bragt i Aktuel Elektronik nr. 2 – 2025 og kan læses herunder uden illustrationer
(læs originaludgaven her)

Af Robert Perkel, application engineer, Microchip Technologys 8-bit MCU business unit

I embeddede systemer er brug af diskret logik normalt, og eksempelvis 74’HC-serien ses mange steder. Denne logik gør apparater i stand til at fungere uafhængigt af en central mikrocontroller (MCU) og kan reagere hurtigere end software, men de øger BOM’en og kræver mere plads på printet.
Microchips MCU’er løser problemet gennem en indbygget CLC-periferi (Configurable Logic Cell) i PIC MCU’erne og en lignende løsning, CCL (Configurable Custom Logic), i AVR MCU’erne. Begge periferier bruger en softwaredefineret kunderettet logik, som kan eksekveres uafhængigt af processoren. Med andre ord fungerer den kundespecifikke logik uafhængigt af MCU’en efter setup af hardwaren.
En begrænsning i disse periferier er dog en begrænset mængde logik. Hver CLC er stort set ækvivalent til en enkelt LUT (Look-Up Table), mens CCL har et par uafhængige LUT’er internt. Periferien er effektiv til helt enkle logiske kredsløb, til blanding af signaler og integration med anden hardwareperiferi. Til for eksempel forhindring af prel ved tryk på knapper i hardwaren er det fint, men til generering af WS2812-outputs og kvadratur-dekodning kræves der en større mængde periferi, og da der kun er en begrænset mængde til rådighed, bliver kompleksiteten af applikationerne begrænset.
Til support af mere komplekse applikationer er en ny type af logisk periferi, CLB (Configurable Logic Block, figur 1) blevet introduceret i PIC16F13145-mikrocontrollerfamilien. CLB erstatter ikke hverken CLC- eller CCL-periferi, og en MCU kan have både CLC/CCL’er og en CLB ombord.
CLB’en i PIC16F13145-familien består af fire sæt af logiske grupper, der hver især indeholder otte BLE’er. BLE’erne er konnekterede på tværs af logikgrupperne, og hver logisk gruppe repræsenterer to GPIO-outputs samt et valgfrit interrupt for processoren (CPU). Ved en 5,5V forsyning har BLE’erne et typisk propagations-delay på mindre end 6ns. Alle BLE’er deler en fælles clock gennem det logiske væv, og clocken er konfigureret i softwaren sammen med en valgfri clock-divider. CLB’en kan bruge én af de interne clock-sources fra MCU’en selv eller en eksternt placeret clock-source.

Initiering fra memoryen
Periferien initieres fra mikrocontrollerens memory og kan styre pins direkte fra vævet selv via en PPS (Peripheral Pin Select). PPS’en gør det muligt for brugeren at omfordele de aktuelle I/O-pins med hardwareperiferien for større designfleksibilitet. Hvis RA1 for eksempel blev brugt til SPI-clocken, men det ville være mere hensigtsmæssigt at bruge RA6, så kan PPS’en omfordele disse pins.
Andre elementer i CLB inkluderer en dedikeret 3-bit hardwaretimer (med dekodede outputs), en edge-detektor til input-signaler samt et 32-bit output-register (til debugging). Andre CIP-outputs (Core Independent Peripherals) på mikrocontrolleren kan bruges som inputs for CLB’en i mere komplekse designs.
Da CLB’en er betydeligt mere kompleks end både CLC og CCL, har Microchip udviklet et nyt værktøj, CLB Synthesizer. CLB Synthesizer giver et grafisk interface til konfiguration af logikken som vist i figur 2. Ud over logik-primitives supporterer værktøjet også biblioteker af højniveaulogik, som enten kan leveres prækonfigureret eller kundeudviklet af brugeren selv.
Ved interaktion med det grafiske værktøj bliver et Verilog-modul genereret ”bag tæppet” af hensyn til syntese. Hvis en designer foretrækker at skrive sin egen Verilog – eller har en færdig fil klar – så kan filen importeres direkte til værktøjet som et modul.
Output af CLB Synthesizeren er en assembler-fil, der indeholder en bitstream, som laver setup af CLB’en og indeholder source-kode til konfiguration af CLB’en som periferi. Dette værktøj kan køre over en MPLAB Code Configurator (MCC) eller via et standalone online-værktøj. MCC er kodegenerering, som gør brugeren i stand til at udføre setup og konfiguration af periferien i mikrocontrolleren med et visuelt interface. Efter konfiguration af hardwareperiferien genererer MCC’en en initialiseringskode samt en device-API.
I runtime bliver CLB-bitstreamen loaded direkte fra program-memoryen med en on-board hardware. En fordel ved den implementering er, at skulle CLB-konfigurationen behøve ændringer, mens programmet kører, så kan load-processen gentages med en forskellig bitstream, der er lagret i komponentens memory.
For at demonstrere CLB i applikationer har Microchip udviklet case-eksempler. Følgende er to eksempler, nemlig en 7-segment display-konverter samt en SPI-til-WS2812. Brugereksemplerne er byggesten, der kan kopieres og bruges som en del af en komplet løsning. De skal demonstrere anvendeligheden af periferien, og hvad der måtte skulle tilføjes i et design.

7-segment display-konverter
Første bruger-case er en 7-segment display-konverter. 7-segment displays kan drives fra et normalt sæt I/O-pins, men en standardimplementering kræver normalt en softwaredefineret lookup-tabel til konvertering fra et input number til et korrekt output-mønster for displayet. I denne implementering fungerer CLB’en som en hardware lookup-tabel. De ønskede karakterer på output (0 til F) loades i CLB’ens input-register fra softwaren. Hvert output-segment i displayet er styret af LUT’en, der mapper inputs til outputs.
Dette bruger-case-eksempel har været designet internt til at bygge et nyt kontrol-board til et tidstagningssystem. Det oprindelige bruger-interface blev udviklet i 1980’erne med en logik fra 74’HC-serien. Med brug af CLB’en kan én enkelt 20-pin mikrocontroller implementere display- og keypad-logik direkte på boardet, og det reducerer BOM’en ganske betydeligt. Forskellen mellem de to designs er vist i figur 3.

WS2812-konverter
Næste eksempel er en SPI-til-WS2812-konverter. WS2812 er en 1-wire seriel protokol til styring af LED-arrays med pulsbreddemodulation (PWM). I dette tilfælde bruges SPI-hardwaren som et skifteregister for de data, der skal sendes ud til LED’erne, mens CLB konverterer SCLK og SDO til det forventede output.
Eksemplet er implementeret med brug af en mono-triggered 3-bit counter, en D-latch med Enable samt en 4-input LUT, som vist i figur 4. Tricket i denne implementering er clock-sources for SPI og CLB. SPI-clocken er sat til idle High med tilstandsskift på den stigende flanke og kørsel på WS2812’s frekvens-output (800kHz), mens CLB’ens clock-source kører ved 10x den hastighed (8 MHz). Når SCLK er Low, så trigger man 3-bit counteren, og den begynder at tælle. Når counteren når 7 (0b111), stopper 3-bit counteren og forbliver i 0, indtil den næste lave periode i clock-pulsen.
Output for counteren føres frem til en 4-input LUT sammen med en latched version af output-data. Det opstiller output-mønstret for data, som kan ses i den højre side af figur 4. Efter reset af counteren vil counter-output forblive ved 0 for at fuldende cyklus. Så vil den næste byte – om nødvendigt – SPI-hardwaren blive transmitteret, og cyklus bliver gentaget.
Begge eksempler demonstrerer fordelene ved en diskret logikimplementering internt i en mikrocontroller. Hardwareperiferien offloader opgaver fra CPU’en, der dermed opnår en bedre responstid og et mindre energiforbrug, og designet kræver færre komponenter. CLB’en gør udvikling af komplekse applikationer – som ikke tidligere kunne realiseres internt i en MCU – til en reel mulighed. På nuværende tidspunkt leverer Microchip CLB i sin PIC16F13145-familie af mikrocontrollere.

Billedtekster:
Figur 1: Blokdiagram for CLB-periferi.

Figur 2: CLB Synthesizer med et åbent PSK-eksempel (Phase-Shift Keying). (PSK).

Figur 3: Side ved side-sammenligning af et oprindeligt print med diskret logik til en 7-segment display-konverter med et nyt CLB-baseret design. Dette designeksempel er udviklet af Josh Booth.

Figur 4: Blokdiagram for en SPI-til-WS2812-konverter udviklet af Petre Teodor-Emilian.

Skrevet i: Artikler fra Aktuel Elektronik Tags: BOM, komponenter, logik, mikrocontrollere

Seneste nyt fra redaktionen

Danisense udvider sit tilbud af DN1000ID-strømtransducere

Komponenter & konnektorerPower13. 02. 2026

Som svar på flere kundeforespørgsler har Danisense, den førende virksomhed inden for yderst præcise strømsensorer/-transducere til krævende applikationer, udvidet sin familie af DN1000ID strømtransducerprodukter med introduktionen af en ny DN1000ID-CP02 model. DN1000ID-CP02 strømtransduceren har

Nyt effektmodul giver større energitæthed og effektivitet i AI-datacentre

IoT & embeddedPower13. 02. 2026

De stadigt større belastninger i AI- og højtydende computere kræver forsyningsløsninger, der kombinerer effektivitet, pålidelighed og skalérbarhed. Integrerede forsyningsmoduler hjælper til at strømline designet, reducerer forbruget og sikrer den stabile ydelse, der netop er påkrævet i avancerede

Reflektion over udviklingen inden for switching & simulering på et turbulent T&M-marked

Test & mål13. 02. 2026

Med refleksion over 2025 har Pickering Interfaces, den førende leverandør af modulære signalswitching- og simuleringsløsninger til brug i test og verificering af elektronik, sat fokus på de seneste 12 måneder af betydelige produktintroduktioner og milepæle for virksomheden, ligesom der bliver

Toshiba introducerer to sinusbølge driver-/controllere tiltrefasede BLDC-motorer

Komponenter & konnektorerPower13. 02. 2026

Toshiba Electronics Europe GmbH lancerer to drivere/controllere til sinusformet pulsbreddemodulation (PWM) – TC78B043FNG og TC78B043FTG – til styring af trefasede børsteløse DC-motorer (BLDC) med support af både ydre (SPM - surface permanent magnet) og indre (IPM – interior permanent magnet)

Gridturn får europæisk tech-grant for innovativ løsning til genbrug af elbilbatterier

AktueltDesign & udvikling13. 02. 2026

Den danske startupvirksomhed Gridturn, som forlænger levetiden på udtjente elbilbatterier ved at omdanne dem til certificerede batterienergilagringssystemer (BESS), er blevet tildelt 75.000 EUR. i støtte fra Women TechEU-programmet. Støtten gives til kvindeligt ledede europæiske

Danske virksomheder reagerer på USA-uro: Hver tredje trækker cloud-data hjem

AktueltWireless & data13. 02. 2026

En ny temperaturmåling fra slutningen af 2025 blandt danske virksomheder viser, at usikkerheden om amerikansk loyalitet allerede inden de seneste udmeldinger har fået danske virksomheder til at tage markante skridt for at sikre deres data og flytte væk fra USA. Undersøgelsen viser, at der blandt

Dansk mikroskopisk laser kan halvere energiforbruget i computere

Design & udviklingTop13. 02. 2026

Forskere på DTU har udviklet en banebrydende nanolaser, der kan blive nøglen til langt hurtigere og langt mere energieffektive computere, telefoner og datacentre. Opfindelsen af nanolaseren er offentliggjort i det videnskabelige tidsskrift Science Advances. Perspektiverne i teknologien er, at

Hjernen bag C++ har netop rundet de 75 år

Artikler fra Aktuel Elektronik11. 02. 2026

Bjarne Stroustrup (født: 1950) er blandt de bedste hoveder inden for dansk teknologi, og hans compilering af sourcekode med C++, som reelt er opfindelsen af sproget, kan føres tilbage til 1979. Selv har opfinderen lige rundet de 75 år og er fortsat aktiv i branchenArtiklen har været bragt i Aktuel

Cirkularitet er i frit fald – og det kan koste Danmark dyrt

Artikler fra Aktuel Elektronik11. 02. 2026

På globalt plan genbruges færre og færre materialer. Det er et tegn på, at vi stadig har svært ved at forene vækst med ressourceansvarArtiklen har været bragt i Aktuel Elektronik nr. 2 - 2026 og kan læses herunder uden illustrationer(læs originaludgaven her) Af Lasse Garby, administrerende

Robotsikkerhed og implementering af en sikker fremtid

Artikler fra Aktuel Elektronik11. 02. 2026

I massevis af artikler har både Analog Devices og flere andre tidligere fokuseret på de sikkerhedsmæssige udfordringer, som robotstyringer giver – navnlig med fokus på de industrielle sikkerhedsstandarder og de ikke uvæsentlige sikkerhedsfunktioner, der er nødvendige til beskyttelse i

Tilmeld Nyhedsbrev

/Nyheder

  • Elektronikmessen

    Mød Aktuel Elektronik på Elektronikmessen 2026

  • EKTOS A/S

    Rethinking Electronics for Next-Gen Machines for the Real World, Not the Lab 

  • Microchip Technology Inc.

    Production-Ready, Full-Stack Edge AI Solutions Turn Microchip’s MCUs and MPUs Into Catalysts for Intelligent Real-Time Decision-Making

  • InnoFour

    FPGA Forum 2026

  • Microchip Technology Inc.

    Microchip Technology and Hyundai Motor Group Collaborate to Explore 10BASE-T1S Single Pair Ethernet for Future Automotive Connectivity

  • HIN A/S

    Vil du arbejde i krydsfeltet mellem teknik, rådgivning og industri?

  • Elma Instruments A/S

    Flir C8 fra Elma er næste generation i kompakte termiske lommekameraer

  • Microchip Technology Inc.

    Nyt effektmodul giver større energitæthed og effektivitet i AI-datacentre

  • Microchip Technology Inc.

    PIC32CM PL10 MCUs Expand Microchip’s Arm® Cortex®-M0+ Portfolio

  • Eltraco Automation

    Inline vapor phase-maskine fra IBL åbner op for større volumen

Vis alle nyheder fra vores FOKUSpartnere ›
 
 
 
 

Læs Aktuel Elektronik

Aktuel Elektronik avisforside

Annoncér i Aktuel Elektronik

Medieinformation

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik