
Contact us online:

www.latticesemi.com/contact
www.latticesemi.com/buy

A Lattice Semiconductor White Paper.

January 2019

Harnessing the Power of AI:
An Easy Start with Lattice’s
sensAI

Rev. 1 WP0017

Artificial intelligence, or AI, is everywhere. It’s a revolutionary technology that is slowly pervading
more industries than you can imagine. It seems that every company, no matter what their business,
needs to have some kind of AI story. In particular, you see AI seriously pursued for applications like
self-driving automobiles, the Internet of Things (IoT), network security, and medicine. Company
visionaries are expected to have a good understanding of how AI can be applied to their businesses,
and success by early adopters will force holdouts into the fray.

Not all AI is the same, however, and different application categories require different AI approaches.
The application class that appears to have gotten the most traction so far is embedded vision.
AI for this category makes use of so-called convolutional neural networks, or CNNs, which attempt
to mimic the way that the biological eye is believed to operate. We will focus on vision in this AI
whitepaper, even though many of the concepts will apply to other applications as well.

Learn more:

www.latticesemi.com

http://www.latticesemi.com/contact
http://www.latticesemi.com/buy
http://www.latticesemi.com

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

2 // 13

TABLE OF CONTENTS

Section 1 | AI Edge Requirements Page 3

Section 2 | Inference Engine Options Page 5

Section 3 | Building an Inference Engine in a Lattice FPGA Page 7

Section 4 | Building the Inference Model in a Lattice FPGA Page 8

Section 5 | Two Detection Examples Page 10

Section 6 | Summary Page 13

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

3 // 13

AI Edge Requirements

AI involves the creation of a trained model of how something works. That model is then used to make
inferences about the real world when deployed in an application. This gives an AI application two major life
phases: training and inference.

Training is done during development, typically in the cloud. Inference, on the other hand, is required
by deployed devices as an ongoing activity. Because inference can also be a computationally difficult
problem, much of it is currently done in the cloud. But there is often little time to make decisions. Sending
data to the cloud and then waiting until a decision arrives back can take time – and by then, it may be too
late. Making that decision locally can save precious seconds.

This need for real-time control applies to many application areas where decisions are needed quickly.
Many such examples detect human presence:

Smart-home appliances

Vending machines

Consumer smart audio/video
electronics

Security cameras

Smart doorbells

Smart doors

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

4 // 13

Other always-on applications include:

Smart speakers

Toll-gate cameras

Retail store cameras Selfie drones

Machine vision After-market
automotive cameras

Because of this need for quick decisions, there is a strong move underway to take inference out of the
cloud and implement it at the “edge” – that is, in the devices that gather data and then take action based
on the AI decisions. This takes the delays inherent in the cloud out of the picture.

There are two other benefits to local inference. The first is privacy. Data enroute to and from the cloud,
and data stored up in the cloud, is subject to hacking and theft. If the data never leaves the equipment,
then there is far less opportunity for mischief.

The other benefit relates to the bandwidth available in the internet. Sending video up to the cloud for
real-time interpretation chews up an enormous amount of bandwidth. Making the decisions locally frees
that bandwidth up for all of the other demanding uses.

In addition:

•	Many such devices are powered by a battery – or, if they are mains-supplied, have heat constraints
that limit how much power is sustainable. In the cloud, it’s the facility’s responsibility to manage power
and cooling.

•	AI models are evolving rapidly. Between the beginning and end of training, the size of the model may
change dramatically, and the size of the required computing platform may not be well understood until
well into the development process. In addition, small changes to the training can have a significant
impact on the model, adding yet more variability. All of this makes it a challenge to size the hardware
in the edge device appropriately.

•	There will always be tradeoffs during the process of optimizing the models for your specific device.
That means that a model might operate differently in different pieces of equipment.

•	Finally, edge devices are often very small. This limits the size of any devices used for AI inference.

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

5 // 13

Lattice’s sensAI offering lets you develop engines with precisely these four characteristics. It does so by
including a hardware platform, soft IP, a neural-net compiler, development modules, and resources that
will help get the design right quickly.

Inference Engine Options

There are two aspects to building an inference engine into an edge device: developing the hardware
platform that will host the execution of the model, and developing the model itself.

Execution of a model can, in theory, take place on many different architectures. But execution at the
edge, taking into account the power, flexibility, and scalability requirements above, limits the choices –
particularly for always-on applications.

•	MCUs - The most common way of handling AI models is by using a processor. That may be a GPU
or a DSP, or it may be a microcontroller. But the processors in edge devices may not be up to the
challenge of executing even simple models; such a device may have only a low-end microcontroller
(MCU) available. Using a larger processor may violate the power and cost requirements of the
device, so it might seem like AI would be out of reach for such devices.

	 This is where low-power FPGAs can play an important role. Rather than beefing up a processor to
handle the algorithms, a Lattice ECP5 or UltraPlus FPGA can act as a co-processor to the MCU,
providing the heavy lifting that the MCU can’t handle while keeping power within the required range.
Because these Lattice FPGAs can implement DSPs, they provide computing power not available in a
low-end MCU.

All of this leads to the following important requirements for interference at the edge:

Engines for making AI inference at the edge must:

•	Consume very little power
•	Be very flexible
•	Be very scalable
•	Have a small physical footprint

Figure 1: FPGA as a Co-Processor to MCU

!"#$%&$'($')$
*#+,-.,//0,1.2345

66, 78841452-.59

&'('),4:;<:49,
+*#, !:;<:4

!!"#$%&'() *+,#$%&'()

-%./0)#$12

*)34%�'54('6

!"#$%&'()'!*+,'-.'-'/01*%02&..0%'30'4/5

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

6 // 13

•	ASICS and ASSPs - For AI models that are more mature and will sell in high volumes, ASICs or
application-specific standard products (ASSPs) may be appropriate. But, because of their activity load,
they will consume too much power for an always-on application.

	 Here Lattice FPGAs can act as activity gates, handling wake-up activities involving wake words or
recognition of some broad class of video image (like identifying something that looks like it might
be a person) before waking up the ASIC or ASSP to complete the task of identifying more speech
or confirming with high confidence that an artifact in a video is indeed a person (or even a specific
person).

	 The FPGA handles the always-on part, where power is most critical. While not all FPGAs can handle
this role, since many of them still consume too much power, Lattice’s ECP5 and UltraPlus FPGAs
have the power characteristics necessary for this role.

Figure 2: FPGA as activity gate to ASIC/ASSP

Figure 3: Stand-alone, Integrated FPGA Solution

•	Stand-Alone FPGA AI Engines - Finally, low-power FPGAs can act as stand-alone, integrated AI
engines. The DSPs available in the FPGAs take the starring role here. Even if an edge device has no
other computing resources, AI capabilities can be added without breaking the power, cost, or board-
area budgets. And they have the flexibility and scalability necessary for rapidly evolving algorithms.

!"#$%&'()*+,(-. /01&
23+45&657.8*

162"9166,

:#6';<6

"+35*+&29=>8?7&.@+(5&
)8&AB&C&AB

D5-*+(&
D5)?8*E&2,&

6:1F
!"#$%&'()*)
+,'$-+'$./(0

!"#$%&'()'1234)+()+,'$-$'5)%+'#)'.)4678*4662

!"#$"%&&%'()*+!,-*+%'"./

!"#$%&'()*
+#%&,-&./012&345

.0123*4(5"%!(67

!"#$

%&'(

)*+,-*./012$

3*(4*56(

!"
#
$

!"
#
$

819*
:-;-

<1=4>;

!"#$"%&&%'()*+!,-*+%'"./

$!"%%%&'()*
678&5-&./012&345

10!?@A?

378*+,-*./012$

!"
#
$

!"
#
$

819*
:-;-

<1=4>;

!"#$

!"#$%&'()'9:;<=>;/0<?"&@<:?AB;:?=&CDE4&90/F:G0<

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

7 // 13

Figure 4: CNN Accelerator for the ECP5 family

Building an Inference Engine in a Lattice FPGA

Designing hardware that will execute an AI inference model is an exercise in balancing the number of
resources needed against performance and power requirements. Lattice’s ECP5 and UltraPlus familes
provide this balance.

The ECP5 family has three members of differing sizes that can host from one to eight inference engines.
They contain anywhere from 1 Mb to 3.7 Mb of local memory. They run up to 1 W of power, and they have
a 100 mm2 footprint.

The UltraPlus family, by contrast, has power levels as low as one thousandth the power of the ECP5
family, at 1 mW. Consuming a mere 5.5 mm2 of board area, it contains up to eight multipliers and up to
1 Mb of local memory.

Lattice also provides CNN IP designed to operate efficiently on these devices. For the ECP5 family,
Lattice has a CNN Accelerator.

Figure 5. Compact CNN Accelerator for the UltraPlus family

For the UltraPlus family, Lattice provides a CNN Compact Accelerator.

!"#$%&'()* +%,$-.).) /(&()$
%&0123)

+435$67 8+$67 944:23;$67+435$67

!"#$%&'()*

/)<
=)3$> %)?$>

/)<
=)3$@ %)?$@

/)<
=)3$@A %)?$@A

!"#$%"&'(#)$ *+,"%-'.""&

/#0)#+'.""&

/)<.)30)

9&*&?)()*'

/&5)BC4&D

#3E.(BF.(E.(B#3()*?)D2&()

123*

!"#$%&'()'*++',--&.&%/01%'21%'03&'4*56'2/7".8

!"#$%&'()* +%,$-.).) /(&()$
%&0123)

+435$67 8+$67 944:23;$67+435$67

!"#$%&'()*

/)<
=)3$> %)?$>

/)<
=)3$@ %)?$@

/)<
=)3$@A %)?$@A

!"#$%"&'(#)$ *+,"%-'.""&

/#0)#+'.""&

/)<.)30)

9&*&?)()*'

/&5)BC4&D

#3E.(BF.(E.(B#3()*?)D2&()

123*

!"#$%&'()'*++',--&.&%/01%'21%'03&'4*56'2/7".8

!"!# $%&'(%)

$%&*%)+',%& -./)0(102+

3%%) !+))4
$%&&0.'05

!"##$%&'
()*+,-./'

6.',*/',%&7
8'%(/90

0%12/

32/12/

!"%/4"5)6%,/

7%-,%+

!"#$%&'()'*+,-./0'*11'2//&3&%.0+%'4+%'05&'630%.73$8 4.,"39

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

8 // 13

Figure 6. Development modules for evaluation of AI application

We won’t dive into the details here; the main point is that you don’t have to design your own engine from
scratch. Much more information is available from Lattice regarding these pieces of IP.

Finally, you can run examples like this and test them out on development modules, with one for each
device family. The Himax HM01B0 UPduino shield uses an UltraPlus device, requiring 22 x 50 mm2 of
space. The Embedded Vision Development Kit uses an ECP5 device, claiming 80 x 80 mm2 of space.

Given an FPGA, soft IP, and all of the other hardware details needed to move data around, the platform
can be compiled using Lattice’s Diamond design tools in order to generate the bitstream that will configure
the FPGAs at each power-up in the targeted equipment.

Himax HM01B0 UPduino Shield Embedded Vision Development Kit

Building the Inference Model in a Lattice FPGA

Creating an inference model is very different from creating the underlying execution platform. It’s more
abstract and mathematical, involving no RTL design. There are two main steps: creating the abstract
model and then optimizing the model implementation for your chosen platform.

Model training takes place on any of several frameworks designed specifically for this process. The two
best-known frameworks are Caffe and TensorFlow, but there are others as well.

A CNN consists of a series of layers – convolution layers, along with possible pooling and fully connected
layers – each of which has nodes that are fed by the result of the prior layer. Each of those results is
weighted at each node, and it is the training process that decides what the weights should be.

The weights output by the training frameworks are typically floating-point numbers. This is the most
precise embodiment of the weights – and yet most edge devices aren’t equipped with floating-point
capabilities. This is where we need to take this abstract model and optimize it for a specific platform –
a job handled by Lattice’s Neural Network Compiler.

The Compiler allows you to load and review the original model as downloaded from one of the CNN
frameworks. You can run performance analysis, which is important for what is likely the most critical
aspect of model optimization: quantization.

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

9 // 13

Figure 7. A single model can be optimized differently for different equipment

Because we can’t deal with floating-point numbers, we have to convert them to integers. That means that
we will lose some accuracy simply by virtue of rounding off floating-point numbers. The question is, what
integer precision is needed to achieve the accuracy you want? 16 bits is usually the highest precision
used, but weights – and inputs – may be expressed as smaller integers. Lattice currently supports 16-,
8-, and 1-bit implementations. 1-bit designs are actually trained in the single-bit integer domain to maintain
accuracy.Clearly, smaller data units mean higher performance, smaller hardware, and, critically, lower
power. But, make the precision too low, and you won’t have the accuracy required to faithfully infer the
objects in a field of view.

So the neural-network compiler lets you create an instruction stream that represents the model, and those
instructions can then be simulated or outright tested to judge whether the right balance has been struck
between performance, power, and accuracy. This is usually measured by the percentage of images that
were correctly processed out of a set of test images (different from the training images).

Improved operation can often be obtained by optimizing a model, including pruning of some nodes to reduce
resource consumption, and then retraining the model in the abstract again. This is a design loop that allows
you to fine-tune the accuracy while operating within constrained resources.

!"#$%&'$()*+,-
./-*&$012(3*01$4

!"#$%&'$()*+,-
.5670$4

!"##$%&'(&)*"+
(&#,-*.'/-01$+&*

!"##$%&'(&)*"+
(&#,-*.'/-01$+&*

!"##$%&'(&)*"+
(&#,-*.'/-01$+&*

56"0$
89:-,9,1$&$0*1

5;<=6"0$
89:-,9,1$&$0*1

5;670$
89:-,9,1$&$0*1

23'4&5&*"#$-5'6*"0&,-*.
7&898'/"::&;'<&5=-*6+-,>

!"#$%&'()'*'+",#-&'./0&-'12,'3&'/45"."6&0'0"77&%&,5-8'7/%'0"77&%&,5'&9$"4.&,5

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

10 // 13

Figure 8. UltraPlus platform for face-detection and human-presence applications

Figure 9. ECP5 platform for face-detection and human-presence applications

The ECP5 family has more resources, and so it provides a platform with more computing power. Here the
camera image is pre-processed in an image signal processor (ISP) before being sent into the CNN.
The results are combined with the original image in an overlay engine that allows text or annotations to be
overlaid on the original image.

Two Detection Examples

We can see how the tradeoffs play out with two different vision examples. The first is a face-detection
application; the second is a human-presence-detection application. We can view how the differences
in the resources available in the different FPGAs affects the performance and power of the resulting
implementations.

Both of these examples take their inputs from a camera, and they both execute on the same underlying
engine architecture. For the UltraPlus implementation, the camera image is downsized and then processed
through eight multipliers, leveraging internal storage and using LEDs as indicators.

!"#$%&"'(

)**+),-.%/#+0//1"1$%#,$

2+3'"#4."41$(

567+8 9+3:4#
;,/%"+31-,$<

!"# $%&'()

=,>?
(%-."1

!"#$%&'()'*+,%-.+$/ 0+-,12%3'12%'1-4&56&,&4,"27'-76'8$3-750%&/&74&'-00+"4-,"27/

!"#$

"%%& '(()*)+,-.+

/ 0 1&)2342)5
678$&0 8&9:4-
;.(,*&9)<.+=&

!"#$%&'()*++, %&'()*

>?#& !2342)

@A)+*,=&!2342)

?#>&-.&BBC&&*.,D)+

!"#$%&'()'*+,-'./0123%4'23%'205&67&1&51"38'087'9$4086.%&:&85&'0../"501"38:

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

11 // 13

We can use a series of charts to measure the performance, power, and area of each implementation of
the applications. We also do two implementations of each application: one with fewer inputs and one with
more inputs.

For the face-detection application, we can see the results in Figure 7. Here the two implementations use
32 x 32 inputs for the simple version and 90x90 inputs for the more complex one.

0 0

0.01 1000

0.02 2000

0.03

C
yc

le
s

(M
)

C
yc

le
s

(M
)

3000

0.04 4000

0.05 5000

0.06 6000
1 mW*

5.5 mm2

*Running at 5 frames per second

0.6 W
100 mm2 0.8 W

100 mm2

UltraPlus ECP5-25 ECP5-45 ECP5-85 UltraPlus ECP5-25 ECP5-45 ECP5-85
0

0.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0

120

100

80

60

40

20

0.5 W
100 mm2

0.6 W
100 mm2 0.8 W

100 mm2

Scale
FC
Pool

Conv
DRAM
FPS

Other
FC
Pool

Conv
DRAM
FPS

0.5 W
100 mm2

Figure 10. Performance, power, and area results for simple and complex implementations of the
face-recognition application in UltraPlus and ECP5 FPGAs

32 x 32 Input 90 x 90 Input

The left-hand axis shows the number of cycles required to process an image and how those cycles
are spent. The right-hand axis shows the resulting frames-per-second (fps) performance for each
implementation (the green line). Finally, each implementation shows the power and area.

The orange bars in the 32 x 32 example on the left represent the cycles spent on convolution. The
UltraPlus has the fewest multipliers of the four examples; the other three are ECP5 devices with
successively more multipliers. As the number of multipliers increases, the number of cycles required for
convolution decreases.

The 90 x 90 example is on the right, and the results are quite different. There is a significant new blue
contribution to the cycles on the bottom of each stack. This is the result of the more complex design using
more memory than is available internally in the devices. As a result, they have to go out to DRAM, which
hurts performance. Note also that this version cannot be implemented in the smaller UltraPlus device.

A similar situation holds for the human-presence application. Here the simple version uses 64 x 64 inputs,
while the complex version works with 128 x 128 inputs.

Harnessing the Power of AI: An Easy Start with Lattice’s sensAI
WP0017

12 // 13

Again, more multipliers reduce the convolution burden, and relying on DRAM hurts performance.

The performance for all versions is summarized in Figure 9. This includes a measure of the smallest
identifiable object or feature in an image, expressed as a percent of the full field of view. Using more
inputs helps here, providing additional resolution for smaller objects.

Figure 11. Performance, power, and area results for simple and complex implementations of the
human-presence application in UltraPlus and ECP5 FPGAs

64 x 64 Input 128 x 128 Input
C

yc
le

s
(M

)

C
yc

le
s

(M
)

0

0.2

0.4

0.6

0.8

1.0

1.6

1.4

1.2

0

50

100

150

200

250

400

350

300

7 mW*
5.5 mm2

0.5 W
10 mm2

0.8 W
10 mm2

UltraPlus ECP5-25 ECP5-45 ECP5-85

0.6 W
10 mm2

*Running at 5 frames per second

UltraPlus ECP5-25 ECP5-45 ECP5-85
0

10

20

30

40

50

60

0

6

5

4

3

2

1

0.5 W
10 mm2

0.8 W
10 mm2

0.6 W
10 mm2

Scale
FC
Pool

Conv

DRAM

FPS

Scale
FC
Pool

Conv

DRAM

FPS

Figure 12. Performance summary of the two example applications in four different FPGAs

Device Size / Power / Performance

Network Smallest
Object

UltraPlus
1-7 mW2

5.5 mm2

ECP5-25
0.5 W

100 mm2

ECP5-45
0.8 W

100 mm2

ECP5-85
0.8 W

100 mm2

Face Detection
32 x 32 Input 50% 465 3360 4511 5251

Face Detection
90 x 90 Input 20% -- 28 82 101

Human Presence Detect
64 x 64 Input 20% 18 115 161 338

Human Presence Detect
128 x 128 Input 10% -- 2.3 3.5 5.4

Rev. 1 WP0017

Learn more:

www.latticesemi.com

Summary

In summary, then, edge-inference AI designs that demand low power, flexibility, and scalability can be
readily implemented in Lattice FPGAs using the resources provided by the Lattice sensAI offering. It
makes available the critical elements needed for successful deployment of AI algorithms:

•	Neural network compiler
•	Neural engine soft IP
•	Diamond design tools
•	Development boards
•	Reference designs

Much more information is available from Lattice; go to www.latticesemi.com to start using the power of AI
in your designs.

Contact us online:

www.latticesemi.com/contact
www.latticesemi.com/buy

http://www.latticesemi.com
http://www.latticesemi.com
http://www.latticesemi.com/contact
http://www.latticesemi.com/buy

