

|3Interrupt Inside2 | Interrupt Inside

|5Interrupt Inside4 | Interrupt Inside

|7Interrupt Inside6 | Interrupt Inside

Java promise “write once, run anywhere”
is real. The EnergyBASE architecture
is also based on the OSGi component
model. By choosing this technology,
we are able to provision, deploy, start,
stop and remove software components
(called “bundles”) on-the-fly on remote
devices without interrupting operation
or other services on the device.

Bundles can be updated individually or
within groups, which gives us the ability
to react quickly and effectively to new
requirements and potential problems in
production environment.

The component model is used to as-
semble customer specific applications
depending on parameters like hard-
ware release, customer contracts, con-
figuration, stage or use case scenario.
As shown in the Illustration 3, there are
many possibilities to combine the ap-
plication bundles: multiple adapters to
handle different kinds of devices from
different manufacturers, implementa-
tion of protocols for communication
purposes, external service connectors,
selectable forecast algorithms, optimi-
zation methods to use the energy in an
efficient way and much more.

There are a few preliminary decisions
you’ll want to make while defining an
OSGi bundle. One of these decisions is
the dependency to other bundles. Each
bundle can be independently defined or
in conjunction with other. For example,
let us assume Bundle B is dependent
on Bundle A. In this case, it is sure that
the startup process of bundle B will be
initialized after bundle A is already in the
correct state (started). In more concrete
manner: it will not happen that one of
the device adapter bundles get started
while the necessary protocol implemen-
tation bundle is not available.

ergyBASE behaves in a very performant
and smooth way notwithstanding to
the huge amount of functionality of the
engine and the complexity (see Illustra-
tion 3) of our application.

The ability to communicate with our
backend through a (SSL encrypted) TCP
socket connection is already provided by
the used OSGi engine. The EnergyBASE
is obviously completely useable without
an active connection to the internet or
our backend. But there are some handy
features, also used by most of our cus-
tomers, like remote access through
the web (https://energybase.enbw.com),
mail sending in case of malfunctioning
or weather consumption which requires
an active connection.

ENERGYBASE BACKEND
Our backend system is based on the
“mPower Remote Management” (mPRM).
It is built by using the same software
stack Java/OSGi, as the EnergyBASE,
which brings us many advantages. It
provides some essential features out-of-
the-box like monitoring external devices,
configuration, remote software updates
and the internal repository to handle dif-
ferent versions of software components.
We are able to extend the existing set
of functionalities by providing self-devel-
oped bundles. We use this technique,
for example, to consume weather-data

Furthermore, we developed a mecha-
nism to define relationships between
services and the ability of injection.
According to the inversion-of-control
pattern, our ServiceMonitor (or more
specifically the OSGi BundleContext)
observes and manages the complete
lifecycle of each service and provides
the requested instance. At this point
the relationship between dependencies
on Bundle- and Service-Layer becomes
much more important. Following the
Illustration 4 we can see, that Service
X is injected in Service Z. The instance
of Service X can only be created when
Bundle B is running. Due to the rela-
tionship between Bundle B to Bundle A,
its running state is also necessary. This
small example shows that this tech-
nique give us a handy way to control

dependencies but can also grow to a
complex construct really fast. In prac-
tice we keep the dependencies as small
as possible.

Despite having the loosely coupled
components, the ability to commu-
nicate to each other by means of an
event-based publish/subscribe mecha-
nism is still present. In addition to the
general properties of the OSGi-based
platform, we also benefit from various
add-ons created by the OSGi-Engine.
It provides several features to monitor
and manage external devices. The En-

>>

SMART HOME

Illustration 4: Bundle and Service dependencies

Illustration 5: EnergyBASE backend (mPRM)

This feature is very convenient to develop automated
test-cases which implement complete test scenarios
over all system components.

or electricity prices from external service
providers, sending emails and push no-
tifications or to activate and deactivate
EnergyBASE(s).

The mPRM provides a generic RESTful
API which allows executing its functions
via HTTPS service calls. This feature is
very convenient to develop automated
test-cases which implement complete
test scenarios over all system compo-
nents.

Due to the use of Java and OSGi on
server and device side, it’s easy to im-
plement distributed services for both
components. For example, in case the
EnergyBASE is connected to a server,
weather data can be consumed and
prepared on the server-side, while the
device is only collecting the relevant re-
gional data from the backend. Further-
more, it is possible to shift functions
from the EnergyBASE device up to the
server to process computationally inten-
sive operations.

Further aspects of the general software
development process are affected by
the homogeneous choice of technology.
We can use the same IDE, with the same
set of plugins and also the same testing
framework to develop client and server
bundles. Also, the build and publishing
process on our CI system does not need
any changes. This may not sound very
important but when you have already
worked with totally different technology
stacks on the client and server side you
will be very pleased with the simplicity of
this approach.

FRONTEND APPLICATIONS
The frontend applications are imple-
mented using modern web-app technol-
ogies and are provided to allow end cus-
tomers access to statistics and process
control via desktop and mobile brows-
er. Besides its browser-based access
there exists also hybride, HTML5-based
mobile web applications.The set of func-

tionality is not as large as the default
web application but it contains all impor-
tant data to get a broad overview about
the current energy production, batteries
state of charge and further more (see
Illustration 6).

Each UI related bundle contains three
directories to provide its content for
different environments: one folder just
for mobile application related files, one
for web browser files, and one shared
folder for both cases. The CI system
chooses the right files in conjunction to
the target environment while building
the software.

The mobile applications are currently

Illustration 6:
EnergyBASE Mobile App

available for Android and iOS as well.

VIRTUALIZATION & TESTING
We are able to virtualize every compo-
nent of the whole system, including the
devices and the device adapters. This
technology is very useful when it comes
to testing individual device configura-
tions as well as performing integration
testing. Our continuous build process
makes use of automated testing during
nightly builds. It is also possible to model
complete sample installations (virtual
households) that can be used for train-
ing of the system maintenance staff or
to support the sales process: it is always
very convincing to demonstrate a live
system rather than showing off a slide
deck.

CREATING A “WHITE LABEL” SOLUTION
FROM A BRANDED PRODUCT
Our customer EnBW decided to offer a
“white label” variant of the EnergyBASE
product due to market demand. The
main challenge for an OEM product pro-
vider is to allow for flexible extensions,
customization and customer specific
skinning of the applications. Our aim
was to provide mechanisms for cus-
tomizing the EnergyBASE software and
offer customers limited or changed set
of functions and UIs compared with the
original software.

BACKEND CHANGES
Since our software is implemented and
structured in OSGi bundles, it is relative-
ly easy to add, replace or remove func-
tionality by deploying or removing bun-
dles. So adding “white label” capabilities
to our system was not really a technical
challenge since the underlying archi-
tecture directly supports the necessary
configurability.

To extend the backed for OEM use, we
had to extend our system database for
multi-client capabilities. This was done
by extending the data model to include
contract data for the OEM customers.
The contract types are being used to
configure which part of the software e.g.
which OSGi bundle is included in the
runtime environment for which particu-
lar contract.

The customer can also order (or imple-
ment) some kind of extra functionality
besides the preexisting bundles and in-
clude them into his contract configura-
tion.

In addition it was also necessary to pro-
vide a way to set specific contract infor-
mation for any particular EnergyBASE
device and to integrate the dynamically
configured extensions into the systems
management. mPRM provides an ap-
propriate technology (called “control
units”) which we used to monitor custom
extensions on the backed.

|9Interrupt Inside8 | Interrupt Inside

DEVICE CHANGES
As a part of the implementation of the
EnergyBASE device software, we de-
veloped a possibility to mark a bundle
within its “Manifest.mf” configuration file
as “ManagedByContract”. Such bundle
will only be loaded when the currently
applicable contract calls for it. The con-
tract information is managed by a soft-
ware component called ContractService.
This service receives every change in
the contract from the backend instantly
through an event system and begins to
start/stop different bundles according
to the new configuration.

Additionally, we did many changes to the
local UI layer and separated these bun-
dles into smaller pieces. Now onwards,
there is one bundle with the standard UI
and one additional for each customer.
This customer bundle does not only
contains UI stuff but also arbitrary code
to solve the required features or change
existing behavior. In the case of UI, it
contains just the difference between
standard and customer specific CSS/
HTML/Assets. The Illustration 7 dem-
onstrates this kind of change in Web-UI
just by changing the contract. Everything
happens without any reboot or manual
browser refresh.

Due to the dependencies between bun-
dles shown in Illustration 4 it is possible
to imagine that there can be several
tricky situations to think about while de-
veloping this part.

CONCLUSION
The Java/OSGi software platform used
for the EnergyBASE project has proven
to be stable, flexible and extensible.
Homogeneous runtime environments
on all system components allow us to
distribute code and functionality as
needed. In particular, the OSGi compo-
nent model and it’s hot deploy/undeploy
capabilities helped us to quickly imple-
ment the customer requirement to
expand the system from a proprietary
offering into an open multi-client plat-
form.

Even new requirements, like opening
up the system as a hosting platform for
domain specific third party apps would
not be a significant challenge for this
robust architecture.

1. The EnergyBASE web app should not be available anymore after the
installation is done.

=> Easy. The UI bundle will be marked as “ManagedByContract” and not
included in the related contract-configuration.

2. The customer wants to develop its own mobile application which displays
the data collected by the EnergyBASE every five minutes.

=> Just implement a mechanism to send the needed data every five min-
utes to the mPRM within the customer-specific bundle. A kind of observer
mechanism will be triggered after receiving the data on the mPRM side.
After that, just forward it to the customer.

3. Based on some cooperation contract, only two manufacturers should be
available in this configuration. A specific solar inverter and one type of bat-
tery. Other devices and manufacturer should not be supported.

=> The same procedure as we did in point 1. The device adapters are
already split into separate bundles for each manufacturer. Just add the
allowed devices in related configuration.

4. The remote support access should be activated all the time.

=> The original Version of EnergyBASE software does not force the user
to enable the option for remote access. In this case, we just have to over-
ride this option within the customer-specific bundle.

5. Additional function: Each device should consume and store the stock
prices for electricity by using a defined service once per day.

=> Create a new “ManagedByContract” bundle and add it to the contract
configuration.

6. Additional function: The customer should consume energy for free to load
its battery in the time periods with negative prices (based on the data
from the previous point) until a specific amount is reached.

=> The same procedure as described in point five. This real-world example
clearly shows that significant deviations between customer requirements
and default implementation can be managed in a very clean way. We
don’t need complex and error prone if/then/else code to solve the chal-
lenge.

A split of functionality and responsibility on our bundles and the overall
modular approach help us manage most of the requirements with a very
low effort on the development side. All complex enhancements were
separated in custom bundles without any need to change the existing
code.

THE FIRST OEM CUSTOMER
Let’s have a quick look on the requirements of our first real world OEM
customer and the resulting efforts in development.

Illustration 7: UI effects by changing contract

Refrences:
EnBW Energie Baden-Württemberg AG – https://enbw.com
EnergyBASE – https://energybase.com
Oracle Java SE 8 Embedded – https://oracle.com/technetwork/java/embedded
ProSyst mBS Smart Home - https://dz.prosyst.com/pdoc/mBS_SDK_7.5
OSGi – https://www.osgi.org/

SMART HOME

Connectivity

IoT / Digitalisation

Software & APPs

Security

Embedded
Solutions R&D

Services

Data Respons is a full-service, independent technology company and a leading player
in the industrial IoT and the embedded solutions market. We provide R&D services

and embedded solutions to OEM companies, system integrators and vertical product suppliers
in a range of market segments such as Medical, Industry Automation, Smart grid/Smart home,

Bank and Insurance, Automotive, Defence, Maritime, Energy and Telecommunications.

A COMPLETE
TECHNOLOGY PARTNER

for smarter embedded and IoT solutions

|11Interrupt Inside10 | Interrupt Inside

FAKE ?
My first encounter with counterfeit components occurred more than 20 years ago while
working for a large North-American electronics manufacturer. One day a fellow test engi-
neer was called to the production line to help investigate the 100% test failure of a certain
product. We headed down to the line, and quickly isolated the failures to a specific compo-
nent. Getting no electric response from the part, we decided to X-ray it to look for damage
or broken wire bonds. Looking at the images in disbelief, we had to check several times
before accepting that the component housing contained neither chip nor wire bonds. Our
boards were all populated with empty capsules marked, labelled, packaged and passed off
as real components.

In hindsight, the innocence of our shock
facing such simple component decep-
tion seems almost quaint. We were

stunned by the sheer audacity of the
fraudsters and did not realize that hawk-
ing empty capsules as real components
is actually one of the more benign forms
of counterfeiting. Counterfeit electronic
components, at that time an almost un-
known issue, would accelerate in the 10
years following to become a visible and
acknowledged problem with thousands
of reported incidents in 2005 which in
turn increased another 300% by 2008.

The issue of counterfeit components piv-
oting around the turn of the millennium
is closely related to fundamental changes
in the electronics component supply
chain at and around that time. The ad-
mittance of China into the World trade
Organization (WTO) in 2001 resulted in
the lifting on export bans for non-govern-
mental entities. A surge of manufactur-
ing outsourcing and the development of
global shipping shifted the manufactur-
ing center of gravity to Asia, specifically
China, a region with weak protection and
understanding of intellectual property,
creating distance between the OEMS
and their supply chain. Somewhat earlier,
major efforts to establish a responsible E-
waste handling led to a massive export of
hazardous waste in the form of discard-
ed electronics to China and other devel-
oping countries, creating a substantial
industry centered on e-waste recycling.
This industry, intended for the recovery
of precious metals from electronic as-
semblies, became a growing source of
reclaimed electronic components.

TYPES OF COUNTERFEITS
The word counterfeit invokes associa-
tions of unauthorized copies. An early
and famous case affecting thousands of
computer motherboards involved a ca-
pacitor electrolyte made from a formula
first stolen, then corrupted, which caused
the capacitors to burst and the comput-
ers to malfunction. The case alone cost
the computer makers more than USD
100 million. However, making copies,
now specifically termed cloning, is just
one of many ways of creating counterfeit

parts, and not even the most common.
Other major sources of counterfeits are
excess inventory improperly disposed
of, legitimately produced parts rejected
by the test process, legitimate parts re-
marked and re-labelled as parts of better
performance and the aforementioned
empty capsules.

But the most common, and perhaps
most sinister counterfeits are parts re-
claimed from used and discarded elec-
tronic products, primarily in Chinese
backyard operations. The boards are typ-
ically heated over open fire to as much
as 400°C (far higher than the approved
rated reflow temperature) to liquefy the
solder, then hit and thumped to the con-
crete floor until the parts fall off. After
sorting and cleaning in whatever water
is available at the site, the top markings
are ground down and a new topcoat is
applied before the parts are marked, la-
belled, packaged, and reintroduced as
fresh parts through the grey market.

This group constituted an estimated
80-90% of the component counterfeit
market in 2012, which in turn was as-
sumed to be 8-10% of the total electronic
components market and representing an
annual revenue loss of USD 7-8 billion to
the semiconductor industry. However,
this is only a fraction of the overall cost
counterfeit components represents to
society, albeit maybe the only one that is
close to quantifiable. Correcting a prob-

lem invoked by a counterfeit component,
once detected, may exceed the value of
the components by orders of magnitude.
A counterfeit component not detected
may cause serious loss of infrastructure
in the worst case, and the loss of life and
safety for people.

RISKS AND CONSEQUENCES
A salvaged waste component already
spent an unknown and possibly signifi-
cant percentage of its useful service life
before being recycled. Add to that an un-
known, and possibly inappropriate ser-
vice situation, and the fact that the part is
on a board that has been discarded, and
it is clear that re-claimed electronic com-
ponents can only be legitimately used in
non-critical applications. However, the
vast majority of reported counterfeit in-
cidents are in the military and aerospace
segments, and includes cases involving
safety and mission critical systems. It is
clear that these segments are particu-
larly susceptible to counterfeits, and
not only discovering incidents to much

higher degree. Since the 2011 reported
discovery of counterfeits in major mili-
tary systems like the F16 fighter jet, and
the realization of the risks it represents,
the attention on fighting counterfeits has
been intense, far greater than in regular
commercial markets. The test and quali-
fication regimes of the defense sector
along with the consciousness of the con-
sequences of failure contributes to a su-
perior detection of substandard quality.
However, defense and aerospace, with
product lifetimes spanning several dec-
ades, are especially mismatched to com-
ponents life cycles of a few years, and do
rely on a steady supply of components
that are in effect obsolete. These hard-
to-come-by parts are most easily found
in the grey market. Hence, the problem
of counterfeit components are closely
related to the ever-mounting problem of
obsolescence and life-cycle management
(see article in the previous issue of Inter-
rupt Inside).

On the face of it, avoiding counterfeit
components should be simple; buy
components directly from component
makers and reputable authorized dis-
tributers only, and you have no problem.
Not until you need a part not available
through those channels, that is. Con-
sidering a complex military system like
a fighter jet or a helicopter, adding to it
variants, upgrades and maintenance,
it is obvious that the supply chain is ex-
tremely large and convoluted involving
sub-contractors with sub-contractors

at multiple levels. Each of them battling
their own difficulties with obsolescence,
lead times, delivery pressure and cost,
and with varying levels of maturity and
control handling the parts supply, not to
mention ethics. The temptations to make
use of the grey market are multifold. A
vendor of a sub-component pressured
and committed to a delivery date but
missing a handful of critical components,
gets instant relief from a smaller broker.
An EMS provider, cut to the bone on price
by his customer, sees the opportunity of
recovering some of his profit procuring
the most expensive parts from another
friendly broker. The appearance of coun-
terfeit components in military planes is
no mystery, once you know it.

FIGHTING COUNTERFEITS
Early topcoats could easily be removed
with an Acetone wipe, and date and lot
codes printed on the components them-
selves were often incorrectly formatted
relative to the specifications from the
vendor. Fakes were therefore relatively

BY: Haldor Husby
Principal Development Engineer
Data Respons

MARKET

These hard-to-come-by parts are most
easily found in the grey market.

|13Interrupt Inside12 | Interrupt Inside

Components are often sanded down
to hide the original markings, the black
topped and remarked.

DEPARTMENT OF
DEFENSE DEFINITION
An unlawful or unauthorized
reproduction, substitution, or
alteration that has been know-
ingly mismarked, misidentified,
or otherwise misrepresented
to be an authentic, unmodified
electronic part from the original
manufacturer, or a source with
the express written authority
of the original manufacturer or
current design activity, includ-
ing an authorized aftermarket
manufacturer. Unlawful or
unauthorized substitution in-
cludes used electronic parts
represented as new, or the
false identification of grade,
serial number, lot number, date
code, or performance charac-
teristics.”

SAE INTERNATIONAL
STANDARD AS5553
DEFINITION
A fraudulent part that has been
confirmed to be a copy, imi-
tation, or substitute that has
been represented, identified, or
marked as genuine, and/or al-
tered by a source without legal
right with intent to mislead, de-
ceive, or defraud.

easy to detect once looked for. How-
ever, counterfeiters are steadily getting
better at what they do, so the technol-
ogy to detect frauds must improve as
well. Companies are, as an example,
working on using botanical DNA to mark
chips, and the use of RFID tags has long
been considered, but the long term
impact of improved marking will only be
relevant for cloned components. To aid
detection, IPC has developed inspection
training and certification for detection
of counterfeit components. One must
assume that frequent re-education is
necessary. Several automated test and
inspection systems targeting detection
of counterfeit components are also
about to hit high-end markets.

Parallel to improvements in process
and technology, the distribution of
counterfeit components is fought in
American courtrooms. In response to
relatively resent definitions of new of-
fences introduced in law motivated by
the appearance of counterfeit parts in
defense systems, the FBI has stepped
up its investigation of component fraud,
and several American brokers have been
subject to high-profile prosecution and
sentenced to lengthy incarceration. The
message is clear; if you supply US de-
fense companies you need to be sure
that all components are genuine, or face
charges and prison terms. The original
“manufacturers” and distributers of the
counterfeit parts are of course still out
of reach.

Inspection and prosecution aside, get-
ting on top of the counterfeit compo-
nent problem necessitates getting in

control of the supply chain. Traceability
from manufacture through distribution
and assembly is inevitable for any OEM
or sub-system manufacturer who wants
to be confident that their product is clean
of counterfeits. Also in this context, co-
ordinated industry responses are impor-
tant. Like the SAE internationals standard
AS5553 for procurement of electronic
parts, and directly motivated by volume
of fraudulent parts in the supply chain.

STAYING SAFE
Counterfeit products are not limited to
electronic components. Fakes, primar-
ily clones, are widespread in all markets.
Every year more than a 100 million fake
phones are put in circulation. Fake ball
bearings, car parts, cables, network serv-
ers, safety textiles, vehicle airbags and
many more are well known and severe
examples of counterfeits discovered.
Considering the profits involved, the
fragmentation of the supply chain and
the many pressures on manufacturers,
there is little reason to expect the fight
to end counterfeiting to be successful.
It appears that the only path to success-
ful avoidance of counterfeit components
goes through solid life cycle manage-
ment. The link between counterfeit com-
ponent avoidance and obsolescence
management cannot be overstated, and
actions taken to avoid “distress procure-
ment” are also actions to keep fake com-
ponents out of the factory.

R&D SERVICES
Data Respons delivers R&D services,
development projects and experienced
specialists with extensive industry
knowledge.

WHY DATA RESPONS
FROM IDEA TO IMPLEMENTATION

CONSULTANCY, SPECIALISTS OR R&D PROJECTS

STRATEGIC COLLABORATION PARTNER

TOP SELECTED TALENTS & SPECIALISTS

DYNAMIC METHODOLOGY

SOFTWARE DEVELOPMENT / SYSTEM DESIGN / EMBEDDED SOFTWARE DEVELOPMENT / INTERACTION DESIGN /
PROJECT MANAGEMENT / ELECTRONIC & HARDWARE DEVELOPMENT / MECHANICAL DESIGN / TEST & QUALITY

600
SPECIALISTS

We make
the technology
you need

Contact our R&D Services on
rndservices@datarespons.com

|15Interrupt Inside14 | Interrupt Inside

SYSML BACKGROUND
The Block diagrams and flow diagrams
are perhaps the de facto standards of
visually describing structure and func-
tions of embedded systems. These
diagrams have good track records, but
one shortcoming lies in the fact that
they can not easily be integrated with
other diagram types or even other dia-
grams of their own type using common
tools. If you for example develop five
block diagrams in Microsoft Visio with
some common elements, you will need
to maintain each of them individually.
Make a change in one, and you will need
to validate the others. If flow diagrams
for these elements are also developed,
the effort of making changes and ensur-
ing consistency increases exponentially.
A solution to making multiple diagrams
consistent, is to use a tool that inte-
grates several diagrams and diagram
types using a relational database. This

BY: Fredrik Bakke
Senior Development Engineer
Data Respons

The concept of modeling system requirements and design in is not a new
one. However, recent advances in languages and tools has created opportu-
nities for reducing the total development effort for embedded systems, and

improve quality. This article aims to present some of these opportunities, based
on the authors’ experiences. Keywords are traceability, and multiple consistent
requirements, design, and test views. The article gives an overview of the SysML
language, its usage, and potential benefits. The article also gives advice on how to
get started with system modeling along with literature recommendations.

was done by UML to unify the world of
software modeling. UML is now a 20
year old mature software modeling lan-
guage that promotes an object oriented
mindset. A major strength of UML is the
ability to combine diagrams showing SW
Structure and SW behavior, and reuse
elements. Reuse is also a key aspect of
SysML, and portions of models can be
reused between product generations or
variants.

The most used UML diagram types are
arguably the class, sequence, and use-
case diagram. UML tools lets elements
be reused between diagrams, and a
change in one element is therefore re-
flected in all diagrams showing that el-
ement. This enables more aspects of
a system to be documented with dia-
grams, for less effort. Common criticism
of UML is that its “red tape” that gets in
the way of coding, and UML will indeed

BY: Svein Tore Ekre
Senior Development Engineer
Data Respons

SYSTEM
MODELING

let you describe SW all the way down to
SW function level. Compared to UML,
the Systems Modeling Language (SysML)
is more light-weight, more general, and
targeted towards modeling require-
ments and architecture.
In 2001, the International Consortium
on Systems Engineering (INCOSE) and
the Object Management Group (OMG)
issued the “UML for Systems Engineer-
ing” request for proposal, with the in-
tention of adapting UML for system
specification and design. In the 16
years since, SysML (now at version 1.4)
has developed into a mature and more
agile language than UML, that is suitable
for modeling requirements, hardware,
software and processes. In addition, a
SysML model gives opportunities for
documenting the relationships between
requirements and system components
at any level of decomposition in accord-
ance with best practices and also func-
tional safety requirements.

SYSML 1.4 AND ENTERPRISE
ARCHITECT
The SysML language is a profile of UML,
and provides both a notation in the form
of diagrams, elements, and relation-
ships, and the semantics of these. Some
diagrams are directly adopted from
UML, the requirements diagram and
parametric diagram are new diagram
types, and some UML diagrams have
been left out in SysML. The authors have
used Enterprise Architect from Sparx
Systems for SysML modeling. It is a fea-
ture rich and flexible modeling tool with
good Support for SysML 1.4.

The process of modeling an aspect of
the system is to first create a diagram of
a suitable type (see SysML 1.4 Diagram
Types), secondly drag in any previously
defined elements, and third define any

METHODOLOGY

“deriveReqt”

|17Interrupt Inside16 | Interrupt Inside

METHODOLOGY

new elements or relationships. After
that, descriptive text and visual format-
ting can be added for increased read-
ability. Enterprise Architect lets you hide
relationships and element properties on
a per diagram basis, so a diagram can
show what you want and nothing more.

SYSTEMS MODELING IN
DATA RESPONS
SysML models have been used in Data
Respons by the authors since 2011.
The applications have ranged from
concept studies, internal process de-
scriptions, through requirements speci-
fications and architecture descriptions.
For requirements specifications, the
authors have created model with full bi-
directional traceability between system
requirements and environmental re-
quirements (Aviation). In the automotive
industry, the authors have established
bi-directional traceability in a system
requirements specification down to
software unit level. This has shown that
SysML models can be efficient means
to achieve traceability between system
requirements and stakeholder require-
ments, and also down to low level
design.

The authors have also used a SysML
model for stakeholder management,
capturing requirements, exploring solu-
tion concepts and developing system ar-
chitecture. Capturing this information in
the same model has shown the strength
of using a model containing diagrams as
a tool for communicating and validating
design decisions in an iterative manner.
The model also proved to be efficient
for establishing a shared terminology
and understanding of the system under
development, for exploring solution
concepts in team, and for documenting
system architecture at multiple levels of
decomposition.

MODELING TOOLS
There are some SysML capable tools to
choose from, both with commercial and
open source licenses. Googling “SysML

Test Case

Stakeholder Requirements

Text = “The System of interest shall...”

System of
interest

Part

Function

Interface Requirement
External
System

Stakeholder

“verify”

“satisfy”

“satisfy”

SysML 1.4 Diagram Types

Diagram type Usage

Block Definition Diagram Define reusable structure and behavioral elements

Internal Block Diagram Connections, interface, internal block structure

Activity Diagram Flow based behavior

Sequence Diagram Message based behavior (Communication protocols)

State Machine Diagram State based behavior

Use Case Diagram Stakeholders and use-cases

Requirements Diagram Requirements and Test Cases

Parametric diagrams Quantitative Constraints

Package Diagram The structure of the model, and relationships between packages

Stakeholders

Requirements

System Objectives

Base Architecture

System Context Use Cases

tools” yields lists of popular tools, com-
parisons and feature lists. SysML under-
went significant changes up till version
1.3. The current version of the standard
(1.4) has been around since 2015. Some
tools are better than others in imple-
menting new SysML features, and not
all tools available have mature enough
SysML support for efficient system
modeling. No Magic MagicDraw, Altova
Umodel and Sparx Enterprise Architect
are among the most popular SysML ca-
pable modeling tools.

GETTING STARTED
SysML is a language. In order to create
a model in the SysML language that
serves a purpose in a given project, the
purpose must first be defined, this might
for example be a requirements specifi-
cation, consistent design diagrams,
interface specifications, test manage-
ment, or a full architecture description.
Secondly, a suitable model structure
and workflow must be established. This
is arguably the most critical challenge of
working with SysML models. Knowledge
of Systems Engineering best practices
and experience with SysML or UML and

the modeling tool is recommended. A
SysML model is structured using pack-
ages. These are logical containers that
contains diagrams and other elements.
Elements in the same or different pack-
ages can have relationships between
each other. Even though the element
and relationship types have defined
SysML semantics, practice shows this is
not always clearly enough defined. While
using the semantics of the SysML stand-
ard is a good thing, we have found that
the usage of diagram, elements and re-
lationship types should not be too tied
to the SysML semantics, but instead be
documented on a per-model basis. Thus
ensuring consistency within the model.
The package diagram below shows one
possible model structure with package
dependencies.

MODEL SETUP RECOMMENDATIONS
SysML models should be structured on
a per project basis in order to meet pro-
ject specific requirement. However, the
experience of the authors is that follow-
ing some general rules when setting up
the model results in it being more read-
able and maintainable.

Elements” feature.’

TRACEABILITY, REPORTING AND
VISUALIZATION
Projects may require traceabil-
ity between stakeholder requirements,
system requirements, components,
test-cases and tests at different levels.
As long as the “Model Setup Recommen-
dations” are followed, custom searches
can be saved and performed quickly on
the model without the need for docu-
menting complex relationships directly.
Examples of possible custom searches
are listen below:

• Passed test-cases at SW component
level tracing to a set of stakeholder
requirements.

• Components impacted by changes
in a requirement, and tests that
must be re-run.

• List of stakeholder requirements not
yet verified at component level.

Sometimes, there are better ways to
present or share information than using
diagrams. Most SysML capable mod-
eling tools have several options for re-
porting and presenting data. Enterprise
Architect has a customizable report
generator for MS Word and PDF, .html
generator and an .XMI import/export
function in addition to version control
integration. Also, relationships in pack-
ages can be presented using the rela-
tionship matrix, and any diagram can be
presented on list format. This makes it
possible to generate different but con-

• Diagram Legends can be defined once and used in several
diagrams. Use Legends and Element colors consistently to
help make the model readable.

• All diagrams should have a text box, describing what aspect
of the system the diagram shows. For improved readability,
do not rely solely on SysML notations like the diagram header.

• Document the usage of SysML element and connector
“Types” and “Stereotypes”, and make sure the meaning is
unique. This is a prerequisite for a consistent model, im-
proves traceability, and enables complex model searches.

• Use a “package” diagram to establish a package structure and
document package dependencies. This serves as an overview
of the model, and helps in managing changes to the model.

• Define a logical system break-down, and structure all informa-
tion in accordance with this. The items in the breakdown
structure should represent logical parts of the system (hous-
ing, power module, controller SW etc). Break down as many
levels as needed.

• Manage the model scope, and stop to consider return on
investment before modeling below “architecture level”.

• Quick visualization of relationships benefits from a properly
structured model. Make sure you understand the visualiza-
tion capabilities of the modeling tool before deciding on
model structure. For Enterprise Architect this is the “Trace-
ability view”, the “Relationship Matrix”, and “Insert Related

The visual notation of SysML
gives the model user a quicker
understanding of requirements
and architecture

|19Interrupt Inside18 | Interrupt Inside

sistent reports and visualizations.
SYSMOD -
THE SYSTEMS MODELING TOOLBOX
SysML provides a language with nota-
tion and semantics, but do not advise
on the process of system modeling.
SysMod is a framework for modeling the
system from stakeholder requirements
to a product architecture. SysMod uses
examples with SysML and Enterprise Ar-
chitect. This can be a good starting point
for determining the scope of the mode-
ling effort and model structure. SysMod
describes at a high level what should be
modeled and the relationship between
packages. See Literature Recommenda-
tions for a description of SysMod.

SUMMARY
SysML with supporting tools provides
opportunities for reducing the docu-
mentation effort and increase quality
in all stages of development projects. In
the initial phases of a project, a SysML
model can improve communication and
help validate requirements and design
decision. Inconsistency will be easier to
discover by the use of visual models.

The project manager can track pro-
gress using custom searches across
complex relationships. For example by
the number of customer requirements
that are verified at component level.
After traceability between requirements,
design and test has been established,
use-cases or user stories can be prior-
itized for each phase of development
more efficiently. Impact analysis dia-
grams can be generated and used for
change management. Use case or user-
story based development can benefit
from giving the developer auto generat-
ed views of requirements and architec-
ture. This provides relevant information
for the specific use case or user story.

Example SysMod Products

System Objectives - The high level objectives of the System under development

Stakeholders - Anyone or anything that has and interest in or interacts with the system during
its lifecycle

Base Architecture - Design decisions made before the project started

Requirements - Stakeholder and System Requirements and Constraints.

System Context - External systems, operators, environmental effects etc.

Logical Architecture - The System Architecture, reusable between product variants

Product Architecture - Product variant/generation specific architecture

The ability to document relationships
from system objective, through require-
ments and design makes it possible to
trace all functionality back to customer
requirements and business value. This
is also valuable for testing, as test cov-
erage can be easily measured. Diagrams
showing complex relationships can
be auto generated based on custom
searches.

At project delivery, customer documen-
tation or internal documents can be
auto generated from the model, using
custom templates. For example design
descriptions, interface descriptions and
test reports. Consistency is ensured
when all reports are generated from
the same model. The model can also
be reused for future generations of the
product to speed up the initial phases of
a project.

If a model is structured in a manner that
facilitates its purpose, the results can be
requirements and architecture descrip-

tions that are more consistent and less
time consuming to develop and main-
tain than document based specifica-
tions. The visual notation of SysML gives
the model user a quicker understanding
of requirements and architecture, this
can make collaboration with stakehold-
ers and within the development team
more efficient. A prerequisite for this is
that some modeling guidelines are fol-
lowed in structuring and developing the
model. The model structure decided
on initially will impact its usability later
on in the project. Consideration of the
models’ purpose and potential scope
must therefore be given as early as pos-
sible. This article gives some recommen-
dations for structuring system models.
To get a clearer picture of the opportu-
nities and limitations of SysML models
and the Enterprise Architect modeling
tool, we recommend the literature listed
at the end of this article. SYSMOD - The
System Modeling toolbox gives an over-
view of the modeling process, and can
be great input for deciding on the mod-
eling scope and structure.

ReferencesLiterature Recommendations

A Practical Guide to SysML
Description: The SysML Language
Author: Friedenthal, Moore, Steiner

SYSMOD - The Systems Modeling Toolbox
Description: A Systems Engineering process based on
best practices, that uses SysML.
Author: Tim Weilkiens

50 Enterprise Architect Tricks
Description: Useful tips and tricks for modeling in Sparx
Enterprise Architect.
Author: Peter Doomen

EA in 10 days
Description: Introduction to Sparx Enterprise Architect.
Author: Peter Doomen

INCOSE - International Council on
Systems Engineering
http://www.incose.org/about

UML - Unified Modeling Language
http://www.uml.org/what-is-uml.htm

SysML
http://www.omgsysml.org

OMG
http://www.omg.org

SysMOD
https://leanpub.com/sysmod

A SHORTCUT
TO EMBEDDED
SMART MESH NETWORKS

In the emerging world of Internet-of-Things, wireless low-power mesh networks are more
relevant than ever. Data Respons has gained valuable experience with one particular
technology after employing it in a large industrial instrumentation project, namely Linear
Technology’s SmartMesh IP. As a specialist on embedded solutions, Data Respons re-
cently became an official Linear SmartMesh partner, after developing the QuickStart
Library: A software library that greatly reduce development time for embedded applica-
tions of SmartMesh IP.

MESH-TO-THE-EDGE
SmartMesh IP is a wireless technol-
ogy pioneered by the Linear Technol-
ogy owned company Dust Networks.
A descendant of ultra-low power and
ultra-high reliability protocols such as
WirelessHART, the SmartMesh IP pro-
tocol is based on the 6LoWPAN and
802.15.4e standards. It features a time
slotted, channel hopping mesh network
where every node knows exactly when
to listen, talk or sleep, resulting in a very

power efficient and collision-free packet
exchange. Every device in the mesh net-
work has the same routing capabilities,
often referred to as “mesh-to-the-edge”,
as it provides redundant routing to the
edge of the network. This allows for a
self-forming and self-healing network
that constantly adapts to changes in to-
pology, while maintaining an extremely
high data reliability, even in harsh radio
frequency environments.BY: Jon-Håkon Bøe Røli

Development Engineer
Data Respons

|21Interrupt Inside20 | Interrupt Inside

RESEARCH

MOTES AND MANAGER
A SmartMesh IP network consists of one or several wireless nodes, known as motes,
which collect and relay data, and a network manager. The manager has two funda-
mental functions: Firstly, it is an access point (AP) that acts as a gateway between the
mesh network and the monitoring or control network. Secondly, it runs the network
application software that continuously makes decisions on how to build and maintain
the mesh network.

The Embedded Manager is a self-contained solution where both the AP function and
the network management algorithms runs on a single chip. This setup however, il-
lustrated in Figure 1, is limited for smaller networks, as the single AP has a hardware
constraint of 100 motes and a throughput of 36.4 packets per second. The customer
software communicates with the manager directly through a serial Application Pro-
gramming Interface (API).

MASTER AND SLAVE
The typical use for a mesh network is to
publish sensor data from each node to
a centralized application for processing,
storage and/or visualization. As illustrat-
ed in Figure 3, a SmartMesh IP mote can
operate in two different modes. Run-
ning in a master mode, the on-board
ARM Cortex-M3 processor can access
sensors and other I/O directly, where
it runs an application that terminates
commands and controls network join-
ing. An On-Chip Software Development
Kit (SDK) allows a user to write applica-
tions directly on the mote, on top of the
SmartMesh IP network protocol stack.
Alternatively, the mote can run as a slave
to a connected device, expecting the
master device to terminate commands
and control network joining via a serial
API. This puts more complexity in the
hands of the user, but is often the most
viable option in an embedded solution,
as a custom MCU adds more flexibility.

C LIBRARY
Since both the SmartMesh mote and
embedded manager has a similar serial
API that the typical embedded applica-
tion has to interact with, Linear provides
a complete implementation of both in
the SmartMesh C Library. This library
abstracts commands into simple func-
tion calls, handling serial formatting
and framing for the high-level data link
control (HDLC) protocol used in all serial
communication with SmartMesh devic-
es. The library also makes sure to match
sent commands with ensuing replies,
passing them back through a callback
function. Notifications received from the
SmartMesh device are also parsed and
correctly acknowledged, before they too
are passed back “up” through a callback
function. Still, implementing the API itself
is not necessarily the hardest part. On
the manager-side there is little to no
required intervention, as it will autono-
mously start creating a network upon
power-up – The connected customer
software simply need subscribe to the
desired notifications, while commands
and interactions are stateless, and thus
reasonably straightforward. By contrast,
on the mote-side a software designer
has to be aware of mote states and
corresponding behavior, as well as the
correct sequence of configurations and
commands to join a network. Linear
found that this knowledge barrier some-
times prevented potential customers
from embedding SmartMesh IP in their
applications, which is why the need for a
simpler starting point emerged.

QUICKSTART LIBRARY
The QuickStart Library (QSL) developed
by Data Respons abstracts the mote
interface one step further: A finite state
machine (FSM) schedules the necessary
sequence of commands depending on
the current state, events and replies
from the mote, leaving only a minimal
and intuitive API for the user. For exam-

A second, new alternative is the Virtual Manager, where the network application runs
on an x86 virtual machine, while only the AP functionality remains on-chip. The AP,
together with a bridge SW on a locally connected MCU or PC, then constitutes an AP
gateway that connects remotely to the virtual manager. This connection can be serial,
Ethernet, WiFi or even cellular, as long as it can support the maximum throughput of
40 packets per second from the AP. In this setup, illustrated in Figure 2, the customer
application interacts with the virtual manager through an HTTP-based API. Adding
multiple APs can scale the network to support thousands of motes, as well as increase
the available throughput, reduce latency or achieve redundancy.

ple, the steps necessary to configure the
mote, set up sockets, initialize a search
for and join a network, as well as request
a certain bandwidth, are all hidden in a
simple call to connect. Downstream
user payloads are also handled by
storing them in a circular inbox buffer
with a configurable size, where calls to
read will pop the oldest message in the
inbox, if any. Send queues a payload for
transmission to the manager, while is
Connected is a simple way to check if
the mote is still connected (this way the

user application can determine if a failed
send is the result of not being connect-
ed or an actual transmission failure).
Lastly, init should be called once upon
startup, and will simply initialize the data
structures and establish the serial con-
nection to the mote. Except for read,
which returns the number of bytes read,
the API only returns simple Booleans
to let the user application know if an
attempt was successful, avoiding the
need to interpret any response codes.
Furthermore, send and connect has a
configurable timeout such that the user
application can be sure that their call
will return within a set limit. While send
only makes one attempt at queueing a
packet, connect keeps trying to join a
network until successful or the config-
ured timeout occurs.

PLATFORM INDEPENDENT
Designed to be highly portable, the QSL
(and the underlying C Library) is written
in C without any hardware-specific code,
allowing its use “as-is” in any C-based
platform. Platform dependent functions
only have their prototypes implemented,
leaving their definition to the user. For
instance, a developer has to define how
to feed the watchdog (if any) or how indi-
vidual bytes are written to or read from
the serial port. Figure 4 illustrates the
library structure, where the hardware-

specific categories that need definitions
are listed to the left (watchdog and lock
for concurrency is optional).

To further help developers get started,
complete sample code is provided for a
set of commonly used platforms: Rasp-
berry Pi, Atmel SAM C21 and STM32, as
well as a generic example for the ARM
mbed operating system. Sample code
for these platforms also include imple-
mentations of the necessary prototypes.

RAPID MESH NETWORK PROTOTYPING
QSL is accompanied by a detailed guide,
with step-by-step instructions on how to
get started with the typical case of data
publishing from an external MCU. The
guide also explains how to get a demo

up and running with the sample code
provided for the supported platforms. It
also includes guidance on existing tools
that can visualize data arriving on the
manager-side, as well as transmit data
downstream to motes. This allows a de-
veloper to integrate a prototype mesh
network with their embedded system
within only a few hours.

As the name entails, the QSL is primar-
ily meant to help developers get started
with embedding SmartMesh IP in their

applications. The library is not an ex-
haustive API for the SmartMesh IP mote,
although its interface is adequate for
most simple applications, as it provides
functionality for data transmission and
configuration of the most important net-
work settings. Furthermore, by extend-
ing its functionality or simply by using
it as a thorough how-to, the QSL can
reduce development time for advanced
applications that require more features
from the underlying mote interface.

Note:
On March 10th, 2017 Linear Technology Corporation
officially became part of Analog Devices. Inc.

The steps necessary to configure the mote, set up sockets,
initialize a search for and join a network, as well as request a
certain bandwidth, are all hidden in a simple call to connect.

Figure 1: SmartMesh IP network with an Embedded Manager.

Figure 2: SmartMesh IP network with a Virtual Manager.

Figure 3:
Master or Slave - The two modes
of a SmartMesh IP mote.

Figure 4: The QuickStart Library structure.

|23Interrupt Inside22 | Interrupt Inside

MACHINE LEARNING

Image
classification
using artificial neural networks

Machine learning using neural networks is a
field that has seen rapid development the recent

years. While the basic theory of artificial neu-
rons linked together in Artificial Neural Net-

works (ANN’s) was developed in the fourties,
the hardware for efficient implementation of

relatively large ANN’s has only recently become
commoditized. In the wake of these advances,

frameworks for building and training ANN’s
have been developed - many with open source

licenses. Unlike in traditional computing, neural
networks can be designed and trained to identify
complex patterns without specifying the pattern-

features in an algorithmic manner with if’s and
else’s. Image Classification is one of the fields

where neural networks can be put to use.

BY: Fredrik Bakke
Senior Development Engineer
Data Respons

In 2016 Data Respons was asked to col-
laborate with the University College of
South-east Norway (HSN) in a research
project with the long term goal of ap-
plying machine learning and image clas-
sification to diagnose the eye disease
Age-related Macular Degeneration
(AMD). The project has financial sup-
port from Oslofjordfondet, a fund that
promotes innovation and R&D in the
region around Oslofjorden. The picture
(at location) shows the backside of the
eye interior (fundus). The marked area
shows a drusen, which is a buildup of
fatty protein. The shape of the drusen
shows it consists of more than one
smaller drusen, and can therefore be a
sign of AMD. This is the feature the ANN-
based classifier needs to detect. This
article aims to give an introduction to

the theory and available tools for build-
ing and training image classifiers based
on neural networks, with root in experi-
ences from the AMD diagnosis project.

CONVOLUTIONAL NEURAL
NETWORKS (CNN’S)
The concept of artificial neural networks
is inspired by nature. Biological neural
networks consists of cells called neurons
that are connected with synapses. Over
the synapses, the neurons fire electri-
cal signals. Similarly, Aritificial Neural
Networks consists of nodes transmit-
ting values to the input of other nodes.
Two of the factors that separates bio-
logical and artificial neural networks is
scale and complexity. An average adult
human brain has 100 billions neurons
each with 7000 connections to other

Co-author: Svein Tore Ekre
Senior Development Engineer
Data Respons

Co-author: Lars Albert Fleischer
Senior Development Engineer
Data Respons

Co-author: Eimund Strøm
Specialist Development Engineer
Data Respons

|25Interrupt Inside24 | Interrupt Inside

neurons. This is currently outside the
capabilities of modern hardware.

The image below shows an example
of a single artificial neuron (node) with
input and output connections. Each
input connection has a weight constant
that is used to define the importance of
the connection. The inputs of the neural
node are multiplied with the weights,
summed and then passed through an
activation function. The output from the
activation function is usually between 0
and 1.

A network architecture commonly used
in image classification is the Convolu-
tional Neural Network (CNN). CNN’s are
feed forward networks that are inspired
by the visual cortex. A CNN consist of a
few distinct types of layers, convolution-
al layers, pooling layers and fully-con-
nected layers. In a feed forward network,
the nodes are divided into hierarchical
layers where each node only transmit to
a node at the level above.

The image below shows an example of
the convolutional layer in a CNN. Start-
ing with a 2x2 pixel group from an
image, the pixel group is multiplied with
a 2x2 filter weight, summed and then
passed through an activation function.
The output from the activation func-
tion is called a feature. The weights are
then shifted and applied to another four
pixels to calculate another feature. Fea-
tures calculated for all the pixels in the
input image then generate a feature
map. More weights can be used to gen-
erate more feature maps.

The pooling layer of a CNN do a subsam-
pling to reduce the amount of features
and the computational complexity of
the network. The most commonly used
pooling layer is the maxpool layer, which
pick the largest element from a group
of features. Typically this group is a 2x2
window and thereby reduce the amount

of features by 75%. The main reason
for the pooling layer is to prevent over-
fitting, which is when the network de-
scribes random noise instead of the
general trend in the data. An overview
of the layers is shown in the figure at the
next page.

The fully-connected layer perform the
high level reasoning in the CNN in order
to output the final scoring.

Designing a CNN involves a number of
parameters whose effect on accuracy is
not necessarily intuitive. Trial and error
is therefore a large part of creating a
CNN, and this make the training process
time-consuming. The design often start
with pre-processing of the images, to
reduce noise and bring out the features
belonging to the classes of interest.

The next step is to design the network.
Decisions that impact the accuracy of
the network include how the image is di-
vided among nodes, and the pixel group
size and overlap best suited to detect
the required features. The final step is
the amount and type of layers and con-
nections. Generally, more layers enables
classification based on more complex
patterns.

In order to achieve a good accuracy,
the CNN has to be trained with a set of
images (dataset). The process of training
the CNN can be described in a simplified
manner with the following steps:

• Run the CNN with with the dataset
• Modify the weights
• Evaluate the accuracy

For each iteration on the training data
the weights gets more correct and the
models ability to accurately classify a
picture better. The size and content of
the dataset used to train the model will
also impacts it accuracy. Typically, the
available dataset is divided into three
subsets; training, validation and test.

The training dataset contains the images
used for training, the validation dataset
is used to evaluate the model accuracy
during training, and the test dataset is
used at the end to verify that the model
has generalized a pattern as opposed to
having memorized the training images

out. Tensorflow is Google’s framework
for building neural networks that was
released as open source in 2015. Sev-
eral tutorials for designing and train-
ing CNN’s using Tensorflow are avail-
able online, and also more user friendly
wrappers like TF-Slim. Theano is another
open source numerical computation li-
brary, that is primarily developed by a
machine learning group at the Univerité
de Montréal. Other Popular Frameworks
include Caffe, Torch and Deeplearning-
4Java.

Theano is widely used for deep learn-
ing research in academia. Raw Theano
can be somewhat non-intuitive to use,
and for this reason several wrappers
for working with ANN’s have been devel-
oped, including the open source librar-
ies Keras, Lasagne, and Blocks. Some of
the creators of Theano later went on to
create Tensorflow at google and the two
libraries have some similarities.

Theano and Tensorflow both let the
user define computational graphs in the
Python language, which is a powerful,

high level scripting language. The com-
putational graphs consists of nodes that
can be functions, variables or constants,
and enables the definition of computa-
tions involving multidimensional arrays.
Convolutional neural network models
map very well to computational graphs.
After a network model has been defined
as a computational graph, the frame-
work compiles it to executable code.

The model can then be trained and used
without the speed-penalties of using
a scripting language. Of Theano and
Tensorflow, Tensorflow has the most
feature-rich toolset for visualizing the
network models.

HARDWARE
Training a CNN for good accuracy may
require thousand of iterations on data
sets containing tens of thousands of
images. There are ways to optimize the
input data for speed, such as reducing
image resolution, removing color chan-
nels and pooling. Even with these meas-
ures, the architecture of normal Central
Processing Units (CPU’s) are not very
well suited for training neural networks.
Normal CPU’s process data using only
a small number of cores, but training
models is a task suited for more mas-
sive parallellization. Modern High-end
GPU-s can have thousands of cores, and
several cards can be incorporated into
a training rig. For this reason, many ma-
chine learning frameworks have support
for GPU computing.

There are two common low-level inter-
faces that a CNN framework can lever-
age for offloading computing tasks to
a GPU. All modern Nvidia GPU’s imple-
ments the Compute Unified Device Ar-
chitecture (CUDA) platform and API for
parallell computing. AMD was an early
adopter of the Open Computing Lan-
guage (OpenCL). OpenCL is an open
platform for heterogeneous comput-

MACHINE LEARNING

(overfitting).

Training a neural network from scratch
is computational intensive in itself, and
more so because it can be necessary to
experiment with different network de-
signs. A number of user friendly wrap-
pers for CNN frameworks and imple-
mentations of pre-defined models can
be found online. For example at https://
github.com/tensorflow/models.

DIABETIC RETINOPATHY DETECTION
In 2015 there was a competition to de-
velop an automated method of detect-
ing a type damage to the eye caused by
diabetes known as diabetic retinopathy.
The competitors would use color fundus
photography as input and use image
classification, pattern recognition, and
machine learning to “push an automat-
ed detection system to the limit of what
is possible” – ideally resulting in models
with realistic clinical potential.

The contestants had over 35,000 retina-
images available for training, and there
were in total 5 severity classes. The
distribution of classes was fairly imbal-
anced and most of the images had no
indications of the disease. A few percent
had the two most severe ratings.

Min-Pooling - The winner of the competi-
tion, used a convolutional network run-
ning on an NVIDIA Graphic Processing
Unit (GPU). Images were pre-processed
using Python and Open Source Com-
puter Vision (OpenCV). Preprocessing
included scaling to achieve uniform
sizes, subtracting color information, and
cropping the image. In addition - images
were scaled and rotated to achieve a
larger training data set. The Network
consisted of 12 Layers, each with be-
tween 5 and 356 connections.

The achieved score of the neural net-
works was measured as a quadratic
weighted Kappa score, and the winner
achieved a score of 0.85. Research

ing, and is supported on both AMD and
Nvidia GPU’s. If considering buying hard-
ware for training convolutional networks,
the choice in hardware depends on the
CNN framework that will run on it. From
the CNN frameworks described above,
Tensorflow supports CUDA and Theano
supports both CUDA and OpenCL.

SUMMARY
The tools for building image classifi-
ers using neural network has become
readily available the last years, and can
perform better than humans in some
circumstances. Already in 2015 both
Microsoft and google’s image classifiers
beat the human score in the ImageNet
challenge (http://image-net.org). Soft-
ware frameworks and learning mate-
rial for building neural networks are
available online and for free, but can
be challenging to navigate. For initial
experimentation and benchmarking - it
can be smart to train prebuilt models. A
number of models and wrappers can be
found for the popular frameworks
Theano And Tensorflow.

Feature maps

f. maps f. maps f. maps

Fully connectedSubsamplingConvolutionsSubsamplingConvolutions

Input

measuring how well an ophthalmolo-
gist can detect diabetic retinopathy find
values ranging from 0.72 to 0.838 kappa.

CNN FRAMEWORKS
During the AMD diagnosis research per-
formed by Data Respons and HSN, two
popular CNN frameworks were tried

The tools for building image classifiers using
neural network has become readily available
the last years, and can perform better than
humans in some circumstances.

|27Interrupt Inside26 | Interrupt Inside

Norway
Oslo, Høvik, Kongsberg,
Stavanger, Bergen.

Sweden
Stockholm,
Gothenburg, Linköping

Denmark
Copenhagen, Århus

Germany
Berlin, Munich, Stuttgart,
Erlangen, Karlsruhe

Taiwan
Taipei

Our values
Being Generous

Responsibility
To Perform
Having fun

HALDOR
HUSBY
Principal Development Engineer
Data Respons

MASc Electrical Engineering, University of Toronto
Siv.Ing. Electronics, Norwegian University of Science and Technology

SVEIN TORE
EKRE
Senior Development Engineer
Data Respons

MSc degree in Systems Engineering,
Buskerud University College

LARS ALBERT
FLEISCHER
Senior Development Engineer
Data Respons

Cand. Scient, University of Oslo.

THIMO
KOENIG
Senior Software Developer
Data Respons, GmbH

M.Sc. Business Process Engineering,
FHDW - University of applied science

JON-HÅKON
BØE RØLI
Development Engineer
Data Respons

MSc in Engineering Cybernetics,
Norwegian University of Science and Technology

EIMUND
STRØM
Specialist Development Engineer
Data Respons

Bachelor of Science, Computer Science
Buskerud University College

INSIDE WRITERS

EDITOR-IN-CHIEF:
Kenneth Ragnvaldsen
CEO, Data Respons

PUBLISHER:
Data Respons ASA,
Sandviksveien 26, 1363 Høvik
Tel: +47 66 11 20 00
info@datarespons.no

EDITOR:
Elisabeth Andenæs,
Corporate Communications & Brand
Manager, Data Respons
Tel: +47 92 20 30 03
Email: ean@datarespons.no

TECHNICAL EDITOR:
Ivar A. Melhuus Sehm
Director R&D Services, Data Respons
ise@datarespons.no

CHRISTINE
MITTERBAUER
Senior Software Engineer, Project Lead
Data Respons, GmbH

Dipl.Ing. Technische Informatik, DHBW Stuttgart

FREDRIK
BAKKE
Senior Development Engineer
Data Respons

MSc degree in Systems Engineering,
Buskerud and Vestfold University College

Group HQ
Data Respons ASA
Sandviksveien 26
NO-1363 Høvik, Norway
Tel.: +47 67 11 20 00
info@datarespons.com

Denmark
Data Respons A/S
Smedeholm 10
DK-2730 Herlev
Tel.: +45 88 32 75 00
info@datarespons.dk

Norway
Data Respons Norge AS
Sandviksveien 26
NO-1363 Høvik
Tel.: +47 67 11 20 00
info@datarespons.no

Germany
Data Respons GmbH
Amalienbadstr. 41, Bau 53
DE-76227 Karlsruhe
Tel.: +49 721 480 887 10
info@datarespons.de

Taiwan
Data Respons ASIA
18F-6 NO. 738,
Chung-Cheng Road,
Chung-Ho, New Taipei
Tel.: +886 2 8226 2150

Sweden
Data Respons AB
Jan Stenbecks Torg 17, III
SE-164 40 Kista
Tel.: +46 8 501 688 00
info@datarespons.se

Main offices

Sylog AB
Jan Stenbecks Torg 17, III
SE-164 40 Kista
Tel.: +46 (0)8 750 49 00

TechPeople A/S
Smedeholm 10
DK-2730 Herlev
Tel.: +45 88 32 75 00

MicroDoc Computersysteme GmbH
Elektrastrasse 6A
D-81925 Munich, Germany
Tel: +49-89-551969-0

Digitalisation
of the industries of tomorrow

We can develop everything from sensor level
to the mobile app, making us a good partner
for our customers with their digital transition.

